- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Perrault, Andrew (5)
-
Tambe, Milind (3)
-
Fang, Fei (2)
-
Wang, Kai (2)
-
Xu, Lily (2)
-
Bondi, Elizabeth (1)
-
Charpignon, Marie-Laure (1)
-
Chen, Haipeng (1)
-
Kochenderfer, Mykel (1)
-
Kumar, Anurag (1)
-
Majumder, Maimuna S (1)
-
Mukhopadhyay, Ayan (1)
-
Nguyen, Dinh_Song_An (1)
-
Schaber, Kathryn L (1)
-
Vorobeychik, Yevgeniy (1)
-
Williamson, Donald S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 6, 2026
-
Nguyen, Dinh_Song_An; Charpignon, Marie-Laure; Schaber, Kathryn L; Majumder, Maimuna S; Perrault, Andrew (, epiDAMIK (ACM SIGKDD))
-
Xu, Lily; Bondi, Elizabeth; Fang, Fei; Perrault, Andrew; Wang, Kai; Tambe, Milind (, Proceedings of the AAAI Conference on Artificial Intelligence)
-
Xu, Lily; Perrault, Andrew; Fang, Fei; Chen, Haipeng; Tambe, Milind (, Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence)
-
Mukhopadhyay, Ayan; Wang, Kai; Perrault, Andrew; Kochenderfer, Mykel; Tambe, Milind; Vorobeychik, Yevgeniy (, Conference on Uncertainty in Artificial Intelligence (UAI))Spatio-temporal incident prediction is a central issue in law enforcement, with applications in fighting crimes like poaching, human trafficking, illegal fishing, burglaries and smuggling. However, state of the art approaches fail to account for evasion in response to predictive models, a common form of which is spatial shift in incident occurrence. We present a general approach for incident forecasting that is robust to spatial shifts. We propose two techniques for solving the resulting robust optimization problem: first, a constraint generation method guaranteed to yield an optimal solution, and second, a more scalable gradientbased approach. We then apply these techniques to both discrete-time and continuoustime robust incident forecasting. We evaluate our algorithms on two different real-world datasets, demonstrating that our approach is significantlymore » « less
An official website of the United States government

Full Text Available